$$y = a \cdot x^n$$

 $y' = (n \cdot a) x^{n-1}$

Today's Topic: The Power Rule – In the next few weeks we will be learning how to find the derivative of a number of different types of functions. Today, we will look at constant functions and functions that involve $a \cdot x^n$.

Remember: Finding the derivative means that we are finding the slope of a function.

In-class examples:

Differentiate each function. Label each function appropriately (i.e. y' =___ or f'(x) =___)

Ex. 1 a)
$$y = 3x^2 + 2x - 1$$

b)
$$s(t) = -4.9t^2 + 120t + 80$$

c)
$$f(x) = 4\sqrt{x} - \frac{1}{x}$$

 $f(x) = 4\sqrt{x} - \frac{1}{x}$
 $f'(x) = 2x^{-1/2} + x^{-2}$
 $f'(x) = \frac{2}{\sqrt{x}} + \frac{1}{x^2}$

d)
$$h(t) = -5t^{-3} + \frac{3}{\sqrt[3]{t^4}} - 5t + 4$$

 $h(t) = -5t^{-3} + 3t^{-4/3} - 5t + 4$
 $h'(t) = 15t^{-4} - 4t^{-7/3} - 5$

Ex. 2 Find the slope of $f(x) = x^3 + 3x - 1$ at x = 2.

$$f'(x) = 3x^2 + 3$$

 $f'(2) = 15$

Tangent Line

point slope

(2, 13)
$$f'(2)=15$$

T: $Y-13=15(x-2)$

Normal
Line: $Y-13=-\frac{1}{15}(x-2)$

If $f(x) = x^3 - x^2 + x - 1$, then f'(2) =

- (A) 10 (B) 9 (C) 7 (D) 5 (E) 3

f(x)=3x2-2x+1

f(2)=9

If $f(x) = \sqrt{x} + \frac{3}{\sqrt{x}}$, then f'(4) =

- (A) $\frac{1}{16}$ (B) $\frac{5}{16}$ (C) 1 (D) $\frac{7}{2}$ (E) $\frac{49}{4}$

f(x)=x1/2+3x1/2

f(x)= 12x-1/2-32x-3/2

 $=\frac{1}{2\sqrt{x}}-\frac{3}{2\sqrt{x^3}}$

 $f'(4) = \frac{1}{4} - \frac{3}{2(8)} = \frac{4}{16} - \frac{3}{16} = \frac{1}{16}$

Homework: Worksheet 22